Configuration of electrofusion-derived human insulin-secreting cell line as pseudoislets enhances functionality and therapeutic utility.

نویسندگان

  • Hong Guo-Parke
  • Jane T McCluskey
  • Catriona Kelly
  • Muhajir Hamid
  • Neville H McClenaghan
  • Peter R Flatt
چکیده

Formation of pseudoislets from rodent cell lines has provided a particularly useful model to study homotypic islet cell interactions and insulin secretion. This study aimed to extend this research to generate and characterize, for the first time, functional human pseudoislets comprising the recently described electrofusion-derived insulin-secreting 1.1B4 human β-cell line. Structural pseudoislets formed readily over 3-7 days in culture using ultra-low-attachment plastic, attaining a static size of 100-200 μm in diameter, corresponding to ~6000 β cells. This was achieved by decreases in cell proliferation and integrity as assessed by BrdU ELISA, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide, and lactate dehydrogenase assays. Insulin content was comparable between monolayers and pseudoislets. However, pseudoislet formation enhanced insulin secretion by 1·7- to 12·5-fold in response to acute stimulation with glucose, amino acids, incretin hormones, or drugs compared with equivalent cell monolayers. Western blot and RT-PCR showed expression of key genes involved in cell communication and the stimulus-secretion pathway. Expression of E-Cadherin and connexin 36 and 43 was greatly enhanced in pseudoislets with no appreciable connexin 43 protein expression in monolayers. Comparable levels of insulin, glucokinase, and GLUT1 were found in both cell populations. The improved secretory function of human 1.1B4 cell pseudoislets over monolayers results from improved cellular interactions mediated through gap junction communication. Pseudoislets comprising engineered electrofusion-derived human β cells provide an attractive model for islet research and drug testing as well as offering novel therapeutic application through transplantation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differentiation of Mouse Embryonic Stem Cell into Insulin-Secreting Cell

Purpose: Differentiation of mouse embryonic stem cells into Insulin secreting endocrine cells. Materials and Methods: In this study, Royan B1 mouse embryonic stem cell (derived from C57BL/6 mouse) were used. In directed differentiation method, embryonicstem cells after embryoid bodies formation were differentiated into insulin secreting cells. Nestin positive cells were obtained after culture ...

متن کامل

Reversal of streptozotocin-induced hyperglycemia by transplantation of pseudoislets consisting of beta cells derived from ductal cells.

The present study was conducted in an attempt to treat streptozotocin (STZ)-induced hyperglycemia by transplanting beta cells derived from pancreatic ductal cells. Ductal cells obtained from neonatal rats were cultured in vitro. Approximately 70% of the cells were converted to insulin-secreting cells by incubating with betacellulin and activin A. Differentiated cells responded to a depolarizing...

متن کامل

Polysaccharide multilayer nanoencapsulation of insulin-producing beta-cells grown as pseudoislets for potential cellular delivery of insulin.

This paper describes the use of a layer-by-layer nanocoating technique for the encapsulation of insulin-producing pancreatic beta-cell spheroids (pseudoislets) within chitosan/alginate multilayers. We used pseudoislets self-organized from a population of the insulinoma cell line MIN6, derived from a transgenic mouse expressing the large T-antigen of SV40 in pancreatic beta-cells, as an experime...

متن کامل

Incorporation of Bone Marrow Cells in Pancreatic Pseudoislets Improves Posttransplant Vascularization and Endocrine Function

Failure of revascularization is known to be the major reason for the poor outcome of pancreatic islet transplantation. In this study, we analyzed whether pseudoislets composed of islet cells and bone marrow cells can improve vascularization and function of islet transplants. Pancreatic islets isolated from Syrian golden hamsters were dispersed into single cells for the generation of pseudoislet...

متن کامل

Cell-to-cell contact influences proliferative marker expression and apoptosis in MIN6 cells grown in islet-like structures.

Cell-to-cell interactions play an important role in the development and maintenance of the beta-cell phenotype. Here, we have investigated whether E-cadherin plays a role in regulating the growth of insulin-secreting MIN6 cells configured as three-dimensional islet-like clusters (pseudoislets). Pseudoislets form by cell aggregation rather than by proliferation from individual cells and attain t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of endocrinology

دوره 214 3  شماره 

صفحات  -

تاریخ انتشار 2012